Brand | BETLUX |
Part NO | BL-Q30A-41,BL-Q30B-41 |
Dimension | 30.40*13.20*7.00 mm |
Weight | 3.1000g |
Package | 112pcs/bag |
Datasheet |
0,30 pouces quatre
affichage numérique LED 0,30 pouces de hauteur chiffres (7.60mm) largeurxhauteur
: 30,40 × 13.20mm
Courant Faible Opération
Anode commune et commune de cathode de
excellent aspect de caractères haute
Easy Light Output montés sur des cartes PC ou Sockets />
IC Multicolor Compatible
Intensité lumineuse
p>
Electrical-optical characteristics:
Part No C.C. | Part No C.A. | color | wavelength | V typical(V) | V max(V) | Brightness(mcd) |
BL-Q30A-41H | BL-Q30B-41H | Red | 700 | 2.25 | 2.6 | 10 |
BL-Q30A-41D | BL-Q30B-41D | Super Bright Red | 660 | 1.85 | 2.2 | 110 |
BL-Q30A-41S | BL-Q30B-41S | High Bright Red | 660 | 1.85 | 2.2 | 100 |
BL-Q30A-41UR | BL-Q30B-41UR | Ultra Bright Red | 660 | 1.85 | 2.2 | 150 |
BL-Q30A-41E | BL-Q30B-41E | Orange | 635 | 2.1 | 2.5 | 105 |
BL-Q30A-41UE | BL-Q30B-41UE | High Bright Orange | 630 | 2.1 | 2.5 | 130 |
BL-Q30A-41Y | BL-Q30B-41Y | Yellow | 585 | 2.1 | 2.5 | 105 |
BL-Q30A-41UY | BL-Q30B-41UY | High Bright Yellow | 590 | 2.1 | 2.5 | 120 |
BL-Q30A-41G | BL-Q30B-41G | Green | 570 | 2.2 | 2.5 | 110 |
BL-Q30A-41UG | BL-Q30B-41UG | High Bright Green | 574 | 2.2 | 2.5 | 130 |
BL-Q30A-41PG | BL-Q30B-41PG | Super Pure Green | 525 | 3.0 | 4.2 | 195 |
BL-Q30A-41B | BL-Q30B-41B | Super Bright Blue | 470 | 3.0 | 4.2 | 90 |
BL-Q30A-41UB | BL-Q30B-41UB | Super Bright Blue | 470 | 3.0 | 4.2 | 120 |
BL-Q30A-41W | BL-Q30B-41W | White | - | 2.7 | 4.2 | 140 |
Package configuration & Internal circuit diagram
Absolute maximum ratings (Ta= 25?C)
Reflector Surface color (1st number)/ Segment Lens color (2nd number):
Number | 0 | 1 | 2 | 3 | 4 | 5 |
Ref Surface Color | White | Black | Gray | Red | Green | |
Epoxy Color | Water clear | White diffused | Red Diffused | Green Diffused | Yellow Diffused |
Absolute maximum ratings (Ta= 25°C)
Parameter | S | D | UR | E | Y | G | Unit | |
Forward Current IF | 25 | 25 | 25 | 25 | 25 | 30 | mA | |
Power Dissipation Pd | 60 | 60 | 60 | 60 | 60 | 65 | mW | |
Reverse Voltage VR | 5 | 5 | 5 | 5 | 5 | 5 | V | |
Peak Forward Current IPF (Duty 1/10 @1KHZ) | 150 | 150 | 150 | 150 | 150 | 150 | mA | |
Operation Temperature TOPR | -40 to +80 | °C | ||||||
Storage Temperature TSTG | -40 to +85 | °C | ||||||
Lead Soldering Temperature TSOL | Max.260+ 5°C for 3 sec Max. ( 1.6mm from the base of the epoxy bulb) | °C |
Absolute maximum ratings (Ta= 25°C)
Parameter | UHR | UE | YO | UY | UG | PG | UB | UW | Unit |
Forward Current IF | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | mA |
Power Dissipation Pd | 75 | 65 | 65 | 65 | 75 | 110 | 120 | 120 | mW |
Reverse Voltage VR | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | V |
Peak Forward Current IPF (Duty 1/10 @1KHZ) | 150 | 150 | 150 | 150 | 150 | 150 | 100 | 100 | mA |
Operation Temperature TOPR | -40 to +80 | °C | |||||||
Storage Temperature TSTG | -40 to +85 | °C | |||||||
Lead Soldering Temperature TSOL | Max.260+ 5°C for 3 sec Max. ( 1.6mm from the base of the epoxy bulb) | °C |
Partno description:
LED seven segment , called also LED numeric display, is widely applied in home appliance panel display and other application.
Applied for:
1. Application
The Seven Segment LED is widely applied for ordinary electronic equipment (such as office equipment,
communication equipment and household applications). Checking with BETLUX's Sales in
advance for information on applications in which exceptional reliability is required, particularly
when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in
aviation, transportation, traffic control equipment, medical and life support systems and safety
devices).
2. Storage
The storage ambient for the Seven Segment LED should not exceed 30℃ temperature or 70% relative humidity.
For extended storage out of their original packaging, it is recommended that the Seven Segment LEDs be stored
in a sealed container with appropriate desiccant, or in a desiccator with nitrogen ambient.
3. Cleaning
Avoid using any unspecified chemical solvent to clean LED . For example, Trichloroethylene, Chlorosen, Acetone, and Diflon S3MC.
Any cleaning method can only be taken under normal temperature in one minute or less if it is required.
Use water to clean the Seven Segment LED if necessary under room temperature
dry it immediately after that.
4.Forming
Any unsuitable stress applied to the epoxy may break bonding wires in LED
Any forming on lead pin must be done before soldering, not during or after soldering.
Avoid applying any stress to resin in order to prevent the epoxy fracture and break on bonding wire.
While forming, please use a tie bar cut or equivalent to hold or bend the pin.
2mm from the base of resin is the minimum distance for the place bending the lead pin.
Avoid bending the lead pin at the same point twice or more.
Soldering
When soldering, leave a minimum of 2mm clearance from the base of the base of the lens to the soldering point. Dipping the lens into the solder must be avoided.
Do not apply any external stress to the lead frame during soldering while the LED is at high temperature.
Recommended soldering conditions:
IR Reflow Soldering (for SMD display) | Wave Soldering | Soldering Iron | |||
Pre-Heat | 150-180°C | Pre-Heat | 100°C Max. | Temperature | 300°C Max. |
Pre-Heat Time | 120sec Max. | Pre-Heat Time | 60sec Max. | ||
Peak Temperature | 260°C Max. | SolderWave | 260°C Max. | Soldering Time | 3sec Max.(one time only) |
Soldering Time | 10 sec Max. | Soldering Time | 5sec Max. |
Note: Excessive soldering temperature and/or time might result in deformation of the LED lens or failure of the LED
ESD(Electrostatic Discharge)
Static Electricity or power surge will damage the LED.
Suggestions to prevent ESD (Electrostatic Discharge):
n Use a conductive wrist band or anti-electrostatic glove when handling these LEDs
n All devices, equipment, and machinery must be properly grounded
n Work tables, storage racks, etc. should be properly grounded
n Use ion blower to neutralize the static charge which might have built up on surface of the LED's
plastic lens as a result of friction between LEDs during storage and handling
ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current,
low forward voltage, or “no light on” at low currents. To verify for ESD damage, check for “light on”
and Vf of the suspect LEDs at low currents.
The Vf of “good” LEDs should be>2.0V@0.1mA for InGaN product and >1.4V@0.1mA for AlInGaP
product.
MAX6959 4½-Digit LED Display Driver
MAX6958 4½-Digit LED Display Driver
MAX6955 7-, 14-, 16-Segment LED Display Driver
MAX6956 LED Static Display Driver and I/O Port
MAX6954 7-, 14-, 16-Segment LED Display Driver
MAX6952 5 x 7 Matrix LED Display Driver
MAX6957 LED Static Display Driver and I/O Port
MAX6950 5-Digit LED Display Driver
MAX6951 8-Digit LED Display Driver
ICM7212 4-Digit LED Driver
ICM7212A 4-Digit LED Driver
ICM7212AM 4-Digit LED Driver
ICM7212M 4-Digit LED Driver
ICM7218A 8-Digit LED Driver
ICM7218B 8-Digit LED Driver
ICM7218C 8-Digit LED Driver
ICM7218D 8-Digit LED Driver
MAX7221 8-Digit LED Display Driver
MAX7219 8-Digit LED Display Driver
Power source for digit display (5v/12v/24v AC/DC converter)